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Relations described by Einstein connecting the rates of spontaneous emission, stimulated emission, and ab
sorption of radiation by an atomic system in free space are generalized to apply to broadband spectra of 
quantized systems dilutely distributed in a dielectric medium. Although the gross features of the broadband 
emission and absorption spectra can be qualitatively different (especially at low temperatures), the various 
spectra are connected at any specific frequency by simple expressions. For a two-level system imbedded in a 
medium at temperature T, typical equations connecting stimulated-emission and absorption cross sections 
a (co) to the rate /(co) of spontaneous emission of photons per unit solid angle per unit frequency interval are: 
cre(oS)=aa{oS) exp[#(/z—co)/kT2 = f(co)(27rc/con)2

} where hfi is a temperature-dependent excitation potential 
and n is the index of refraction of the host material. 

IN a classic paper, Einstein1 described relations con
necting the rates of spontaneous emission, stimulated 

emission, and absorption of radiation by an atomic 
system in free space having two sharp energy levels. 
In the present paper we derive generalizations of Ein
stein's relations which pertain to broadband spectra of 
systems dilutely distributed in a dielectric medium such 
as a liquid, a solid, or a dense gas. As we have indicated 
elsewhere,2,3 these generalizations are of considerable 
practical importance for the analysis of laser systems4 

in which the spectra might typically derive from a 
dilute concentration of impurity centers in an insulating 
solid and for which the spectral width reflects the inter
action of the discrete impurity "electronic" levels with 
the quantized vibrations of the host lattice. Although 
the gross features of the emission and absorption spectra 
of such systems can be qualitatively different (especially 
at low temperatures),5 we shall verify that at any 
specific frequency the various spectra are connected by 
relatively simple expressions. For a pair of sharp levels 
in free space our results reduce to those previously 
given by Einstein. Our results are not inconsistent with 
the work of Fowler and Dexter5 since those authors 
compare spectra at different frequencies whereas we 
compare spectra at the same frequency. 

Let us briefly summarize Einstein's results relevant 
to a two-level quantum system (energies E± and E2 
with E<2>E\, level degeneracies g\ and #2) in free space 
interacting with radiation of angular frequency 

(a = 2TV=(E2-Ei)/b. (1) 
If u(u>) is the energy density per unit volume of radia
tion per unit frequency interval Av = Ao)/27r, then in 
free space in thermal equilibrium at temperature T 
that density is given by the Planck expression 

U(O)) = STT-
2TT% 

exp(ho)/kT) - 1 \ 2 T C / 
(2) 

1A. Einstein, Physik Z. 18, 121 (1917); cf. also, A. Einstein 
and P. Ehrenfest, Z. Physik 19, 301 (1923). 

2 D. E. McCumber, Bull. Am. Phys. Soc. 9, 280 (1964). 
3 D. E. McCumber, Phys. Rev. 134, A299 (1964). 
4 L. F. Johnson, R. E. Dietz, and H. J. Guggenhein, Phys. Rev. 

Letters 11, 318 (1963). 
5 W. B. Fowler and D. L. Dexter, Phys. Rev. 128, 2154 (1962). 

A 

If for this density the average rate of radiation absorp
tion by systems in each lower state (energy Ei) is 
Bi2u(oo), the rate of stimulated emission by systems in 
each excited state (energy E2) is 2?2iw(«), and the rate 
of spontaneous emission per unit frequency interval by 
systems in those excited states is A 21, Einstein found 
that 

giBi2=g2B2i ' (3a) 
and that 

A 21= 167r2h(cc/2wcyB2u (3b) 

To generalize these expressions, we consider an en
semble of independent quantized "impurity'' systems 
uniformly distributed in a homogeneous dielectric 
medium filling a box of large but finite volume V. We 
assume that the impurity energy levels can be grouped 
into metastable sets whose total populations Nj per 
unit volume can be independently specified (perhaps to 
within the trivial constraint that ^2jN3- be fixed). 
Within each set all states are in equilibrium at some 
common average temperature T>0. Although we neg
lect nonradiative transitions in our analysis, we expect 
our results to apply to all systems for which the time 
required for thermal equilibration within each meta
stable set is short compared to the lifetimes (total) of 
the different sets. 

Radiation in the doped dielectric can be characterized 
by an angular frequency co and by wave-vector and 
polarization indices (k,X) which specify the plane-wave 
spatial eigenmodes of the box. In degenerate cases X 
can indicate either plane or circular polarization. We 
define a dimensionless function /x(k,co)/t- such that 
/x(k,co)yt-̂ 12kx is the average intensity in photons/sec 
per unit frequency interval of X-polarized frequency-co 
radiation emitted into the solid angle d£2k\ as a result 
of the spontaneous radiative decay of an impurity in 
the excited metastable set j to the lower lying set i<j. 
If Tji is the spontaneous-emission lifetime for the 
transition, then 

r r00 do> 
J dQkX - / x ( k A . (4) 
J 4TT J — 00 27T 

W e define crrt(k,co)# to be the cross section for a single 
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impurity in the metastable set i to be excited to the 
set j by the absorption of a plane-wave (k,\,a>) photon. 
We take ae\(k,o))ji to be the cross section for an im
purity in the set j to decay to the set i by the stimulated 
emission of a (k,\,co) photon. If we multiply the absorp
tion cross section, say, by the density Ni of initial-set 
impurities, we obtain an inverse absorption length 
characteristic of the impurity-doped material. Further 
multiplication by the group velocity of light gives the 
time rate of photon absorption. 

In order to determine the relations connecting the 
two cross sections, we label the energy eigenstates (in 
the absence of interaction with any perturbing external 
radiation field) of each impurity plus any surrounding 
dielectric with which it interacts by the metastable-set 
index j and by a second index a ranging over all (pos
sibly degenerate) states within the set j . If the state 
(jot) has an energy Eja, then the probability pJct for 
that state to be occupied in true thermal equilibrium 
at temperature T is 

Pja=exp(-Eja/kT)/Yii £/3 exp(—Eifi/kT). (5) 

Consider next the interaction of the impurity-doped 
dielectric with radiation. We restrict ourselves to the 
lowest order "linear" interactions (implicit in our previ
ous cross section and fluorescence-function definitions) 
of any radiation mode with any given dielectric-per
turbed impurity.6 We characterize the perturbing ef
fects of any particular radiation mode (k,X,co) by the 
set of matrix elements Mja,ifi(k,\<S) connecting the 
different states (ja) and (iff). Using these matrix ele
ments with the definitions given previously, we can 
relate the absorption and stimulated-eniission cross 
sections by the ratio 

iV>0\(k,w)»i 

2V>«x(k,w)# 

X)a^p^|My«,^(k,X,w)|25(Eya-E^~^co) 

H-ajPja | Aft/3 ,ia(k,X,a>) | 28(Eja —E^~ho)) 

V V N A A A A A A A ^ Q 
(3) 

(6) 

where here Nj=^apja> We have used the fact that 
whatever frequency-dependent or mode-dependent fac
tors and local-field corrections are relevant to the 
absorption cross section are also relevant to the emis
sion cross section. This is an immediate consequence of 
the fact that the component of the total system Hamil-
tonian which describes the interaction of radiation with 
the impurity-doped dielectric is necessarily Hermitian 
(real). This same fact ensures that 

| Jlfya,* (k,X,«) | 2 = | i f # f/a(k,X,«) | (7) 

6 In this paper we do not consider spectral functions character
istic of nonlinear optical processes. Generalized Einstein relations 
do exist for such functions but they are less useful and somewhat 
more complicated than the relations we consider here for the 
linear spectral functions. 

| ['VV/V/V/V/V/V/V/X/V*-

tb) 

' \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \yk/ \ /v 
(c) 

FIG. 1. Absorption and emission processes appropriate to a 
photon wave packet traveling from left to right. Parts (a) and (b), 
respectively, indicate photon absorption and emission by the small 
material body indicated by the open rectangle. The net result of 
successive absorption and emission processes is equivalent (except 
for a time delay and a concomitant loss of phase coherence) to 
process (c) in which the photon passes right through the body 
without interaction. It is clear that process (b) is not the time 
reverse of process (a) because in the time-reversed process the 
photon wave packet would be traveling from right to left, a dif
ferent radiation mode combination from that relevant to (a). 
The general Einstein relations (9) and (19) of the text apply 
separately to each radiation mode, not to pairs of modes con
nected by time reversal. 

If we further note from Eq. (5) that 

pipb (Eja—Eip—fua) 

= pja exp (tiu/k T) 8 (Eja—Eip—faa) , (8) 

then it follows from (6) that7 

crax(k,w)tf=cr6x(k,«)/i exp[fi(o)—fxjl)/kT'], (9) 

where, if (Nj/N^eq. is the ratio of the total set-/ and 
set-i populations in true thermal equilibrium at tem
perature T, 

exp(-*hlXji/kT)=(Nj/Nz)tq. (10) 

Equivalently, the temperature-dependent excitation po
tential finji equals the net free energy required to excite 
one impurity from the set i to the set j>i while main
taining the initial dielectric temperature Z1.3 

Equation (9) is the generalization of Eq. (3a) we 
have been seeking. It correctly reduces to Eq. (3a) 
when the spectral linewidth is less than kT/fi and JB# 
is defined as in Eq. (20) below. In deriving Eq. (9), we 
used the facts that the desired cross sections relate to 
the lowest order radiation-impurity interaction and that 
the system Hamiltonian must be Hermitian. Since our 
proof does not depend upon time-reversal invariance, 
the results also obtain for systems in equilibrium in 
static magnetic fields and for systems described by 
equilibrium ensembles having net linear or angular 
momentum. The irrelevance of time-reversal invariance 
to the arguments of this paper is apparent in Fig. 1 
where we have schematically indicated absorption and 
emission processes for a photon wave packet incident 
upon an absorbing medium. 

Einstein was able to infer his relation (3a) from 
detailed-balance relations of the type we shall use 

7 Compare the more formal but essentially equivalent operator 
statements of this result given in Sees. 2 of D. E. McCumber, 
J. Math. Phys. 5, 221 (1964); 5, 508 (1964). 
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below to determine the function /x(k,w)j». This was 
possible because his parameters A a and B3i refer only 
to a single pair of energy levels and do not depend upon 
the detailed thermal occupation of different energy 
levels within metastable sets—that is, they are tem
perature-independent. This temperature independence, 
used in conjunction with the fact that thermal-equi
librium blackbody radiation is described by the cele
brated Planck formula, is sufficient to determine the 
two coefficient ratios of Eq. (3) from a single detailed-
balance relation. Because our functions are implicitly 
temperature-dependent (when the spread of energies 
within a metastable set is large relative to kT), we 
cannot proceed in precisely the same way but must 
supplement the detailed-balance relation by the micro
scopic arguments of Eqs. (6)-(8) above. 

To generalize Eq. (3b), we relate the emission cross 
section to the fluorescence function /x(k,w)#. Using 
microscopic arguments, we can easily verify that for 
fixed j>i the function /x(k,w)# is only related to that 
emission cross section crex(k,co)y; which belongs to the 
same metastable sets j>i as /x(k,o>)#. The specific 
relation connecting these spectral functions can be 
inferred from Eq. (9) and Einstein's detailed-balance 
argument1 that at thermal equilibrium the total rate of 
spontaneous plus stimulated emission of (k,X,co) radia
tion in j—*i transitions must equal the rate of ab
sorption of such radiation in i—>j transitions, the 
equilibrium radiation density being given by a general
ized Bose-Einstein-Planck distribution function for 
temperature T. 

In our derivation we assume that the radiation fre
quency co is uniquely related to the mode indices 
(k,X)by 

tt=«x(k)s=c£/»x(k,a>), (11) 

where wx(k,co) is the real part of the index of refraction 
of the impurity-doped dielectric. When the effective 
radiation-dielectric interaction is very strong (as it is, 
for example, near the intrinsic absorption edge of an 
insulator or semiconductor), the mode (k,X) will not 
have a unique frequency but will have a spread of fre
quencies (or in some cases a single complex frequency) 
near the frequency (11) and also frequencies near the 
intrinsic resonances of the impurity doped dielectric. 
(Equivalently, a unique real wave vector cannot be 
assigned to each real frequency a>.) In such cases Eq. 
(11) is inapplicable and special techniques are required.8 

For essentially this reason the results we derive below 
relating /x(k,co)/i to <rex(k,w)# are inapplicable whenever 
the index of refraction n\(k7oi) of the impurity-doped 
dielectric varies rapidly over the interval characteristic 
of the frequency wave vector uncertainty. For example, 
if at the frequency co the doped dielectric is characterized 
by the absorption constant a (cm -1), then our results 

8 J. J. Hopfield, Phys. Rev. 112, 1555 (1958). 

are strictly valid only if 

d ac d 
n\ (k,co);£>Aaco—n\ (k,co) = n 

do) n\(k9o)) do) 
,(k,co). (12) 

Note, however, that these restrictions do not apply to 
the more general relations (9). 

If p\(k,a))dQk\ is the unit-volume density per unit 
frequency interval of modes of X-polarized frequency-co 
radiation propagating in the solid angle dOkx, then, 
when Eq. (11) obtains, 

px(k,co) = 
*awx(k,co)" 

lire J L dk 

'do)\(k)' 
(13) 

At temperature T the average photon occupation of each 
radiation mode is given by the Bose-Einstein-Planck 
distribution function 

n(o)) = lexp(fio)/kT) - 1 ] - 1 , (14) 

which is a function only of the frequency co of the mode. 
Combining Eqs. (13) and (14), we have in px(k,co)^(co) 
the average density per unit solid angle per unit fre
quency interval of X-polarized frequency-co photons. 
Multiplying this density by the photon energy fio), 
summing over the two polarizations X, and integrating 
over the solid angle 4^-, we obtain an expression for the 
radiation energy density per unit frequency interval 
which for free space with n\(k,oo)^=l correctly reduces 
to the 2* (co) of Eq. (2). 

At thermal equilibrium the density of (k,X,co) radia
tion is a constant of the motion. For the i <-> j transition 
the rate at which spontaneous emission acts to increase 
this density is 

/x(k,u)*#;U, (15) 

where Nj\Qq is defined as in Eq. (10). The rate of 
stimulated emission of (k,X,co) radiation equals the 
density px(k,co)^(co) of (k,X,co) photons times the group 
velocity do)\(k)/dk of light in the material, the emission 
cross section crex(k,co)^, and the upper state population 
iV j j eq • 

ae\ (k,co)y4px (k,co) n (o)) [Jcox (k)/d*]i\Ty | eq . (16) 

The rate of absorption is similarly 

O - a X ( k , C 0 ) ^ p x ( k , C o ) n ( c o ) [ J c 0 x ( k ) / ^ ] A ^ | eq. ( 1 7 ) 

Equating emission and absorption rates, we require for 
detailed balance that 

T dcox(k)~| 
/ x ( k , C 0 ) i i + ( 7 e x ( k , C 0 ) ^ p x ( k , C 0 ) ^ ( c 0 ) A ^ i i e q 

L dk J 

Jcox(k) 
= (7ax(k,Co)#px(k,CO>(co) Ni\ eq-

dk 
(18) 
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Using Eqs. (9)-(14) in Eq. (18), we find after some 
straightforward algebra that 

faik^ji^aexik^jipxik^duxity/dk (19a) 

= (7-ex(k,w)i£aj^x(k,co)/27rc]2, (19b) 

which results are the desired generalization of Eq. (3b). 
For a narrow spectral line centered at frequency co, 

Eqs. (9) and (19b) correctly reduce in free space to 
Eqs. (3) provided we identify 

r rdco 
^ 2 i = E x / <K2kx/—/x(ft,«)2i (20a) 

J 4TT J 2ir 
and 

1 r rdoo 
B2i=——Ex/ <®kx/ — 

u(<b) J AT J 2ir 

X<r ex(k,C0)2 lPx(k,C0)»(co)Aox(k)/rf* 

o-eX(k,co) Jcox(k) 

#co d* 
(20b) 

etc. Note that, as Fowler and Dexter have observed,5 

Eqs. (3) do not obtain with the definitions (20) unless 
the spectral line is narrow. The generalization of 
Einstein's results is not to be found in the definitions 
(20) but rather in Eqs. (9) and (19) above. 

An application of the preceding results to spectra in 
solids has been discussed elsewhere.3 As another simple 
but instructive illustration of the general validity of 
Eq. (9), let us briefly consider the Doppler broadening 
of a spectral line of a dilute molecular gas of tempera
ture T. We consider the radiative transitions between 
two sharp levels of separation ficc2i=E2—Ei for a mole
cule of mass If. The molecular velocities are described 
by a Maxwell-Boltzmann distribution for which the 
probability for velocity v is proportional to exp(—Mv2/ 
2kT). If the matrix element for the molecular transition 
is independent of velocity, the cross sections for the 
absorption and emission of frequency-cu radiation are, 
respectively, 

<ra\ (k,o>) 12=C\ (k,co) (dv)(dv') 
/ -

Xexp(-M*/2kT)6(Mv+hk-MY') 

XH^M/2+hw- (vf)2M/2-ha>21) (21a) 

and 

o-ex(k,co)2i=Cx(k,w) / (dv)(dvf) 

Xexp(-Mv2/2kT)5(Mv-My'-hk) 

Xd(v2M/2+ha)2i-(vyM/2-ha>), (21b) 

where the unspecified factor Cx(k,a>) is a slowly varying 
function of the parameters (k,X,co) and is the same in 
both cross sections. As is well known, the Doppler 
line-shape results automatically from the energy and 
momentum 8 functions present in Eqs. (21). Performing 
the v and v' integrations in Eqs. (21), we obtain the 
results (| k | = o>/c) : 

<7ax(k,a>)i2 

= (7x(k,a;)exp -

a-ex(k,co)2i 

= (7x(k,co)exp -

Mc2/ co21 

( 1 
2kT\ o) 

hco 

2Mc2) J ' 

Mc2/ 
1-

2kT\ 

C0 2 1 

2Mc2, n 
(22a) 

(22b) 

where we have introduced a new coefficient Cx(k,o>). 
Comparing Eqs. (22), we find that 

orax(k,a?)i2=<rex(k,co)2i exp[A(co—a2i)/*r]. (23) 

This is of the form (9) with /X2i=w2i, the unshifted 
molecular frequency expected from Eq. (10). Note that 
a result of the type (9) obtains only when we retain the 
recoil energy corrections zizfio)/2Mc2 in the second factor 
of the exponents of Eq. (22). 

The exponential factor in Eq. (23) is important only 
if the Doppler spectral width o)(kT/Mc2)1/2 is large 
compared to kT/fi—that is, if 

tico>(Mc2kTy'2. (24) 

If the molecular mass is one atomic mass unit and if 
r - 3 0 0 ° K , the right-hand side of Eq. (24) equals 
4.91 X103 eV, an x-ray energy. While the exponential 
factor in Eq. (9) thus does not have a significant 
frequency dependence in the usual Doppler-broadened 
optical spectra, it is often significant in the much 
broader vibrationally perturbed optical spectra of solids 
and liquids.3'4 
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